Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.883
Filtrar
1.
PeerJ ; 12: e17123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560469

RESUMO

Background: The purpose of the present study was to investigate the effect of erythropoietin (EPO) on lung ischemia-reperfusion injury (LIRI). Methods: Sprague Dawley rats and BEAS-2B cells were employed to construct an ischemia-reperfusion (I/R)-induced model in vivo and in vitro, respectively. Afterward, I/R rats and tert-butyl hydroperoxide (TBHP)-induced cells were treated with different concentrations of EPO. Furthermore, 40 patients with LIRI and healthy controls were enrolled in the study. Results: It was observed that lung tissue damage, cell apoptosis and the expression of BAX and caspase-3 were higher in the LIRI model in vivo and in vitro than in the control group, nevertheless, the Bcl-2, FGF23 and FGFR4 expression level was lower than in the control group. EPO administration significantly reduced lung tissue damage and cell apoptosis while also up-regulating the expression of FGF23 and FGFR4. Rescue experiments indicated that EPO exerted a protective role associated with the FGF23/FGFR4/p-ERK1/2 signal pathway. Notably, the expression of serum EPO, FGF23, FGFR4 and Bcl-2 was decreased in patients with LIRI, while the expression of caspase-3 and BAX was higher. Conclusion: EPO could effectively improve LIRI, which might be related to the activation of the FGF23/FGFR4/p-ERK1/2 signaling pathway.


Assuntos
Eritropoetina , Traumatismo por Reperfusão , Animais , Humanos , Ratos , Proteína X Associada a bcl-2/metabolismo , Caspase 3/genética , Epoetina alfa/metabolismo , Eritropoetina/farmacologia , Isquemia , Pulmão/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais
2.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612696

RESUMO

Methylmercury is a known environmental pollutant that exhibits severe neurotoxic effects. However, the mechanism by which methylmercury causes neurotoxicity remains unclear. To date, we have found that oxidative stress-induced growth inhibitor 1 (OSGIN1), which is induced by oxidative stress and DNA damage, is also induced by methylmercury. Therefore, in this study, we investigated the relationship between methylmercury toxicity and the induction of OSGIN1 expression using C17.2 cells, which are mouse brain neural stem cells. Methylmercury increased both OSGIN1 mRNA and protein levels in a time- and concentration-dependent manner. Moreover, these increases were almost entirely canceled out by pretreatment with actinomycin D, a transcription inhibitor. Furthermore, similar results were obtained from cells in which expression of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) was suppressed, indicating that methylmercury induces OSGIN1 expression via NRF2. Methylmercury causes neuronal cell death by inducing apoptosis. Therefore, we next investigated the role of OSGIN1 in methylmercury-induced neuronal cell death using the activation of caspase-3, which is involved in apoptosis induction, as an indicator. As a result, the increase in cleaved caspase-3 (activated form) induced by methylmercury exposure was decreased by suppressing OSGIN1, and the overexpression of OSGIN1 further promoted the increase in cleaved caspase-3 caused by methylmercury. These results suggest, for the first time, that OSGIN1 is a novel factor involved in methylmercury toxicity, and methylmercury induces apoptosis in C17.2 cells through the induction of OSGIN1 expression by NRF2.


Assuntos
Compostos de Metilmercúrio , Células-Tronco Neurais , Síndromes Neurotóxicas , Animais , Camundongos , Caspase 3/genética , Compostos de Metilmercúrio/toxicidade , Fator 2 Relacionado a NF-E2/genética , Apoptose
3.
J Orthop Surg Res ; 19(1): 239, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615043

RESUMO

BACKGROUND: This study aims to explore how miR-98-5p affects osteoarthritis, focusing on its role in chondrocyte inflammation, apoptosis, and extracellular matrix (ECM) degradation. METHODS: Quantitative real-time PCR was used to measure miR-98-5p and CASP3 mRNA levels in OA cartilage tissues and IL-1ß-treated CHON-001 cells. We predicted miR-98-5p and CASP3 binding sites using TargetScan and confirmed them via luciferase reporter assays. Chondrocyte viability was analyzed using CCK-8 assays, while pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α) were quantified via ELISA. Caspase-3 activity was examined to assess apoptosis, and Western blotting was conducted for protein marker quantification. RESULTS: Our results showed lower miR-98-5p levels in both OA cartilage and IL-1ß-stimulated cells. Increasing miR-98-5p resulted in reduced pro-inflammatory cytokines, decreased caspase-3 activity, and improved cell viability. Furthermore, miR-98-5p overexpression hindered IL-1ß-induced ECM degradation, evident from the decline in MMP-13 and ß-catenin levels, and an increase in COL2A1 expression. MiR-98-5p's impact on CASP3 mRNA directly influenced its expression. Mimicking miR-98-5p's effects, CASP3 knockdown also inhibited IL-1ß-induced inflammation, apoptosis, and ECM degradation. In contrast, CASP3 overexpression negated the suppressive effects of miR-98-5p. CONCLUSIONS: In conclusion, our data collectively suggest that miR-98-5p plays a protective role against IL-1ß-induced damage in chondrocytes by targeting CASP3, highlighting its potential as a therapeutic target for OA.


Assuntos
Caspase 3 , MicroRNAs , Osteoartrite , Humanos , Caspase 3/genética , Caspase 3/metabolismo , Condrócitos , Citocinas , Inflamação , Interleucina-1beta/farmacologia , MicroRNAs/genética , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , RNA Mensageiro
4.
Mol Biol Rep ; 51(1): 491, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578469

RESUMO

BACKGROUND: This study aimed to investigate the cytotoxic, apoptotic, invasion, metastasis, and heat shock proteins (HSPs) effects of N. sativa oil on breast and gastric cancer cells. METHODS: We assessed the cytotoxic and apoptotic effects of various concentrations of N. sativa oil (10-50-100-200 µg/mL) on MCF7 breast cancer and AGS, an adenocarcinoma of the gastric cell line, at 24, 48 and 72 h using the MTT test. Additionally, the expression of the Caspase-3, BCL2/Bax, MMP2-9 and HSP60-70 gene was examined using RT-PCR in cell lines treating with N. sativa. RESULTS: The MTT experiments demonstrate that N. sativa has a time and dose-dependent inhibitory effect on the proliferation of MCF7 and AGS cancer cells. The vitality rates of MCF7 and AGS cells treated with N. sativa were 77.04-67.50% at 24 h, 65.28-39.14% at 48 h, and 48.95-32.31% at 72 h. The doses of 100 and 200 µg/mL were shown to be the most effective on both cancer cells. RT-PCR analysis revealed that N. sativa oil extract increased caspase-3 levels in both cell lines at higher concentrations and suppressed BCL2/Bax levels. Exposure of MCF7 and AGS cell lines to N. sativa caused a significant decrease in the expression of MMP2-9 and HSP60-70 genes over time, particularly at a dosage of 200 µg/mL compared to the control group (p < 0.05). CONCLUSIONS: Our findings indicate that N. sativa oil has a dose-dependent effect on cytotoxicity and the expression of apoptotic, heat shock proteins, and matrix metalloproteinases genes in breast and gastric cancer.


Assuntos
Antineoplásicos , Nigella sativa , Óleos de Plantas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Caspase 3/genética , Metaloproteinase 2 da Matriz , Apoptose , Proteína X Associada a bcl-2 , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proteínas de Choque Térmico , Proliferação de Células , Células MCF-7
5.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(3): 315-323, 2024 Mar 15.
Artigo em Chinês | MEDLINE | ID: mdl-38500425

RESUMO

Objective: To explore the molecular mechanism of miR-515-5p in inhibiting chondrocyte apoptosis and alleviating inflammatory response in osteoarthritis (OA). Methods: Human cartilage cell line C28/I2 was cultured in vitro and treated with 10 ng/mL interleukin 1ß (IL-1ß) for 24 hours to construct an in vitro OA model. C28/I2 cells were transfected with miR mimics, mimics negative control (NC), over expression (oe)-NC, and oe-Toll-like receptor 4 (TLR4), respectively, and then treated with 10 ng/mL IL-1ß for 24 hours to establish OA model. Cell proliferation capacity was detected by cell counting kit 8 and 5-Ethynyl-2'-deoxyuridine, cell apoptosis and cell cycle were detected by flow cytometry, and B-cell lymphoma 2 protion (Bcl-2), Bcl-2-associated X protein (Bax), cleaved-Caspase-3, TLR4, myeloid differentiation primary response gene 88 (MyD88), p65 and phosphorylated p65 (p-p65) protein expression levels were detected by Western blot. Real-time fluorescence quantitative PCR was used to detect mRNA expression levels of miR-515-5p and TLR4, and ELISA was used to detect pro-inflammatory factor prostaglandin E2 (PGE2), tumor necrosis factor α (TNF -α), and IL-6 levels in cell supernatant. The potential binding sites between miR-515-5p and TLR4 were predicted by BiBiServ2 database, and the targeting relationship between miR-515-5p and TLR4 was verified by dual luciferase reporting assay. Results: After the treatment of C28/I2 cells with IL-1ß, the expressions of miR-515-5p and Bcl-2 protein and the proliferation ability of C28/I2 cells significantly reduced. The expression levels of Bax and cleaved-Caspase-3 protein, the levels of pro-inflammatory factors (PGE2, TNF-α, IL-6) in the supernatant of C28/I2 cells, and the apoptosis of C28/I2 cells significantly increased. In addition, the proportion of the cells at S phase and G 2 phase decreased significantly, and the proportion of cells at G 1 phase increased significantly, suggesting that the cell cycle was blocked after IL-1ß treatment. After transfection with miR mimics, the expression level of miR-515-5p in the cells significantly up-regulated, partially reversing the apoptosis of OA chondrocytes induced by IL-1ß, and alleviating the cycle arrest and inflammatory response of OA chondrocytes. After treating C28/I2 cells with IL-1ß, the mRNA and protein levels of TLR4 significantly increased. Overexpression of miR-515-5p targeted inhibition of TLR4 expression and blocked activation of MyD88/nuclear factor κB (NF-κB) pathway. Overexpression of TLR4 could partially reverse the effect of miR mimics on IL-1ß-induced apoptosis and inflammation of OA chondrocytes. Conclusion: miR-515-5p negatively regulates the expression of TLR4, inhibits the activation of MyD88/NF-κB pathway and apoptosis of OA chondrocytes, and effectively alleviates the inflammatory response of the cells.


Assuntos
MicroRNAs , Osteoartrite , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Proteína X Associada a bcl-2/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Condrócitos/metabolismo , Dinoprostona/metabolismo , Interleucina-1beta/farmacologia , Interleucina-1beta/metabolismo , Interleucina-6/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Osteoartrite/metabolismo , RNA Mensageiro , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Chem Biol Drug Des ; 103(3): e14492, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38485457

RESUMO

Recent evidence has proved that thymoquinone as a natural polyphenol has great anticancer and anti-proliferative effects in cancer cells. In this study, we aimed to examine the effects of thymoquinone on increasing cisplatin-induced apoptosis human oral squamous cell carcinoma cells and its underlying molecular mechanisms. SCC-25 cancer cells treated by thymoquinone and cisplatin with different concentrations. Cell viability will determine by using MTT assay. The concentrations of reactive oxygen species (ROS) and antioxidant activities were determined using specific related kits. DNA damage, lipid, and protein oxidation were assessed. Real-time PCR and Western blot analysis will be used to determine the expression of apoptosis-related proteins including Bax, Bcl-2, and caspase-3. Combination of thymoquinone and cisplatin suppressed synergistically SCC-25 cancer cell viability and induced apoptosis in dose-depended manner. Cell treatment with combination of thymoquinone and cisplatin led to accumulation of ROS within cells and increase in the intracellular levels of DNA damage, protein and lipid peroxidation. In addition, the combination of thymoquinone and cisplatin modulated the mRNA and protein expression levels of apoptosis-related proteins including Bax, Bcl-2, and caspase-3. Thymoquinone potentiated cisplatin anti-cancer effect on OSCC by inducing oxidative stress in cells.


Assuntos
Benzoquinonas , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Caspase 3/genética , Caspase 3/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Neoplasias Bucais/tratamento farmacológico , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Estresse Oxidativo , Linhagem Celular Tumoral
7.
BMC Biotechnol ; 24(1): 14, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491556

RESUMO

Cancer associated drug resistance is a major cause for cancer aggravation, particularly as conventional therapies have presented limited efficiency, low specificity, resulting in long term deleterious side effects. Peptide based drugs have emerged as potential alternative cancer treatment tools due to their selectivity, ease of design and synthesis, safety profile, and low cost of manufacturing. In this study, we utilized the Red Sea metagenomics database, generated during AUC/KAUST Red Sea microbiome project, to derive a viable anticancer peptide (ACP). We generated a set of peptide hits from our library that shared similar composition to ACPs. A peptide with a homeodomain was selected, modified to improve its anticancer properties, verified to maintain high anticancer properties, and processed for further in-silico prediction of structure and function. The peptide's anticancer properties were then assessed in vitro on osteosarcoma U2OS cells, through cytotoxicity assay (MTT assay), scratch-wound healing assay, apoptosis/necrosis detection assay (Annexin/PI assay), RNA expression analysis of Caspase 3, KI67 and Survivin, and protein expression of PARP1. L929 mouse fibroblasts were also assessed for cytotoxicity treatment. In addition, the antimicrobial activity of the peptide was also examined on E coli and S. aureus, as sample representative species of the human bacterial microbiome, by examining viability, disk diffusion, morphological assessment, and hemolytic analysis. We observed a dose dependent cytotoxic response from peptide treatment of U2OS, with a higher tolerance in L929s. Wound closure was debilitated in cells exposed to the peptide, while annexin fluorescent imaging suggested peptide treatment caused apoptosis as a major mode of cell death. Caspase 3 gene expression was not altered, while KI67 and Survivin were both downregulated in peptide treated cells. Additionally, PARP-1 protein analysis showed a decrease in expression with peptide exposure. The peptide exhibited minimal antimicrobial activity on critical human microbiome species E. coli and S. aureus, with a low inhibition rate, maintenance of structural morphology and minimal hemolytic impact. These findings suggest our novel peptide displayed preliminary ACP properties against U2OS cells, through limited specificity, while triggering apoptosis as a primary mode of cell death and while having minimal impact on the microbiological species E. coli and S. aureus.


Assuntos
Anti-Infecciosos , Antineoplásicos , Sais , Animais , Camundongos , Humanos , Caspase 3/genética , Caspase 3/metabolismo , Caspase 3/farmacologia , Survivina/genética , Survivina/metabolismo , Survivina/farmacologia , Escherichia coli/metabolismo , Peptídeos Antimicrobianos , Linhagem Celular Tumoral , Oceano Índico , Antígeno Ki-67/metabolismo , Staphylococcus aureus , Apoptose , Peptídeos/farmacologia , Peptídeos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Anti-Infecciosos/farmacologia , Anexinas/farmacologia
8.
J Cell Mol Med ; 28(7): e18206, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494858

RESUMO

Glioblastoma multiforme (GBM) is a highly aggressive and lethal form of primary brain tumour. Borax has been demonstrated to exhibit anti-cancer activity through cell death pathways. However, the specific impact of borax on ferroptosis in GBM is not well-established, and the underlying regulatory mechanisms remain unclear. Initially, the effective concentration of borax on cell viability and proliferation in U251 and A172 cells was determined. Subsequently, the effects of borax on the wound healing were analysed. Nuclear factor erythroid 2-related factor 2 (NRF2), glutathione peroxidase 4 (GPx4), glutathione (GSH), HSP70 protein 5 (HSPA5), malondialdehyde (MDA) levels and caspase-3/7 activity were determined in borax-treated and untreated cells. Finally, the protein expression levels of HSPA5, NRF2 and GPx4 were analysed. Borax suppressed cell viability and proliferation in U251 and A172 cells in a concentration- and time-dependent manner. In addition, borax treatment decreased GPx4, GSH, HSPA5 and NRF2 levels in U251 and A172 cells while increasing MDA levels and caspase-3/7 activity. Moreover, borax reduced mRNA and protein levels of HSPA5, NRF2 and GPx4 in U251 and A172 cells. Consequently, borax may induce ferroptosis in GBM cells and regulate the associated regulatory mechanisms targeting NRF2 and HSPA5 pathways. This knowledge may contribute to the development of novel therapeutic approaches targeting ferroptosis in GBM and potentially improve patient outcomes.


Assuntos
Boratos , Ferroptose , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Fator 2 Relacionado a NF-E2/genética , Caspase 3/genética , Glutationa , Proteínas de Choque Térmico HSP70
9.
Funct Integr Genomics ; 24(2): 61, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507114

RESUMO

This research provides a glimmer of hope that the knockout of HCP5 leads to a therapy response to considerably prolong the life of patients with OC. RT-PCR evaluated the expression of lncRNA HCP5 in the ovarian cancer OVCAR-3 cell line. CRISPR knockout cell lines validated by western blot. Small genomic deletions at the targeted locus were induced. CCK-8 colony formation assays were used to analyze the effect of HCP5 knockout on the proliferation capacity of OVCAR-3 cells. Transwell migration and invasion assayed. Furthermore, the Sphere-formation assay isolated the most aggressive population of cancer stem cells. Bioinformatic analysis showed a significant correlation between lncRNA HCP5 up-regulation and OVCAR-3 cell proliferation. The ChIP technique assesses specific sites of interaction between transcription factors and DNA. Real-time PCR assays explored the relationship between HCP5, Hsa-miR-9-5p, CXCR4, CDH1, caspase-3, p53, bcl2 and survivin. PCR carried out amplification of the 448-bp band for sgRNA1 and sgRNA2 after the use of particular primers for HCP5. the number of breast cancer cells that moved to the bottom chamber reduced considerably after transfection with PX461-sgRNA1/2 vectors compared to the Blank control groups (P < 0.05). MTT assay designated growth curves that showed the rate of OVCAR-3 growth was significantly repressed (***P < 0.001) when compared with control OVCAR-3 cells after HCP5 knockdown. Also, the survival results of W.T cells in 24, 48 and 72 h showed 92%, 87% and 85%, respectively. This is while the cells of the CRISPR/Cas9 group in which LncRNA HCP5 was knocked out had 42% (*P < 0.05), 23%(**P < 0.01) and 14% (**P < 0.01) survival, respectively. The expression levels of caspase-3, Hsa-miR-9-5p, P53 genes in the HCP5 deletion of CRISPR/Cas9 group significantly increased than the W.T. control group; the deletion group showed a considerable reduction in HCP5 expression compared to the blank control group (3.6-fold, p < 0.01). Whereas BCL2, SURVIVIN, CXCR4, CDH1 genes expression markedly increased than in HCP5 knockout cells (5.8-fold, p < 0.05). These results indicate that CRISPR/Cas9-mediated HCP5 disruption on OVCAR-3 cell lines promotes anti-tumor biomarkers, suppressing ovarian cancer progression. Consistent with these results, HCP5 is one of the most critical lnc for the efficient proliferation and migration of OVCAR-3 cell lines.


Assuntos
MicroRNAs , Neoplasias Ovarianas , RNA Longo não Codificante , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Survivina/genética , Survivina/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Regulação para Cima , MicroRNAs/genética , Proliferação de Células/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Regulação Neoplásica da Expressão Gênica
10.
Stem Cell Res Ther ; 15(1): 84, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500206

RESUMO

BACKGROUND: Chemotherapy-induced alopecia (CIA) is a distressing adverse effect of chemotherapy, with an estimated incidence of 65% and limited treatment options. Cyclophosphamide (CYP) is a common alopecia-inducing chemotherapy agent. Human dental pulp stem cells (DPSCs) secrete several paracrine factors that up-regulate hair growth. Conditioned medium (CM) collected from DPSCs (DPSC-CM) promotes hair growth; culturing mesenchymal stem cells under hypoxic conditions can enhance this effect. METHODS: The effect of DPSC-CM cultured under normoxic (N-) and hypoxic (H-) conditions against CYP-mediated cytotoxicity in keratinocytes was examined using cell viability assay, lactate dehydrogenase (LDH) cytotoxicity assay, and apoptosis detection. The damage-response pathway was determined in a well-established CIA mouse model by analyzing macroscopic effects, histology, and apoptosis. Reverse transcription-quantitative PCR and Caspase-3/7 activity assay were used to investigate the impact of DPSC-CM on the molecular damage-response pathways in CYP-treated mice. The effect of post-CIA DPSC-CM application on post-CIA hair regrowth was analyzed by macroscopic effects and microstructure observation of the hair surface. Furthermore, to investigate the safety of DPSC-CM as a viable treatment option, the effect of DPSC-CM on carcinoma cell lines was examined by cell viability assay and a subcutaneous tumor model. RESULTS: In the cell viability assay, DPSC-CM was observed to increase the number of keratinocytes over varying CYP concentrations. Furthermore, it reduced the LDH activity level and suppressed apoptosis in CYP-treated keratinocytes. DPSC-CM exhibited the cytoprotective role in vivo via the dystrophic anagen damage-response pathway. While both N-CM and H-CM downregulated the Caspase-3/7 activity level, H-CM downregulated Caspase-3 mRNA expression. The proportion of post-CIA H-CM-treated mice with > 90% normal hair was nearly twice that of vehicle- or N-CM-treated mice between days 50 and 59 post-depilation, suggesting that post-CIA H-CM application may accelerate hair regrowth and improve hair quality. Furthermore, DPSC-CM suppressed proliferation in vitro in certain carcinoma cell lines and did not promote the squamous cell carcinoma (SCC-VII) tumor growth rate in mice. CONCLUSIONS: The potentiality of DPSC-CM and H-CM as a promising cytoprotective agent and hair regrowth stimulant, respectively, for CIA needs in-depth exploration.


Assuntos
Antineoplásicos , Carcinoma , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Meios de Cultivo Condicionados/farmacologia , Caspase 3/genética , Polpa Dentária , Alopecia/induzido quimicamente , Alopecia/terapia , Ciclofosfamida/efeitos adversos , Antineoplásicos/efeitos adversos , Carcinoma/induzido quimicamente
11.
Iran J Med Sci ; 49(1): 10-21, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38322164

RESUMO

Background: Three main cell signaling pathways including the endoplasmic reticulum stress (ERS) response, autophagy, and apoptosis play critical roles in both cell survival and death. They were found to crosstalk with one another during tumorigenesis and cancer progression. This study aimed to investigate the expression of the spliced form of X-box binding protein 1 (XBP1s), p62, and caspase-3, as the essential biomarkers of ERS, autophagy, and apoptosis in patients with colorectal cancer (CRC), as well as the correlation between their expression and clinicopathological data. Methods: This retrospective study was conducted on formalin-fixed paraffin-embedded (FFPE) blocks, which were collected from patients and their tumor margins, from the tumor bank of Imam Khomeini Hospital (Tehran, Iran) from 2017 to 2019. Tissue microarray (TMA) was used to measure the XBP1s, p62, and caspase-3 biomarkers. Data were analyzed using SPSS software version 20, and P≤0.05 was considered statistically significant. Results: Evaluating the total of 91 patients, a significant relationship was found between XBP1s expression and TNM stage (P=0.003), primary tumor (pT) (P=0.054), and the degree of differentiation (P=0.006); and between caspase-3 with pT (P=0.004), and lymphovascular invasion (P=0.02). However, no significant correlation was found between p62 and clinicopathological data. Furthermore, a positive relationship between XBP1s and p62 was confirmed (correlation coefficient: 22.2% and P=0.05). Conclusion: Our findings indicated that XBP1s could be considered as a target for therapy in personalized medicine.


Assuntos
Caspase 3 , Neoplasias Colorretais , Proteína 1 de Ligação a X-Box , Humanos , Biomarcadores , Caspase 3/genética , Relevância Clínica , Neoplasias Colorretais/genética , Irã (Geográfico) , Proteínas Serina-Treonina Quinases/metabolismo , Estudos Retrospectivos , Proteína 1 de Ligação a X-Box/genética
12.
Exp Cell Res ; 435(2): 113950, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309674

RESUMO

The existing knowledge of the involvement of vinculin (VCL) in the control of ovarian cell functions is insufficient. To understand the role of VCL in the control of basic porcine ovarian granulosa cell functions, we decreased VCL activity by small interfering RNA (VCL siRNA). The expression of VCL, accumulation of VCL protein, cell viability, proliferation (accumulation of PCNA and cyclin B1), proportion of proliferative active cells, apoptosis (accumulation of bax, caspase 3, p53, antiapoptotic marker bcl2, and bax/bcl-2 ratio), DNA fragmentation, and release of steroid hormones and IGF-I were analyzed by RT‒qPCR, Trypan blue exclusion test, quantitative immunocytochemistry, XTT assay, TUNEL assay, and ELISA. The suppression of VCL activity inhibited cell viability, the accumulation of the proliferation-related proteins PCNA and cyclin B1, the antiapoptotic protein bcl2, and the proportion of proliferative active cells. Moreover, VCL siRNA inhibited the release of progesterone, estradiol, and IGF-1. VCL siRNA increased the proportion of the proapoptotic proteins bax, caspase 3, p53, the proportion of DNA fragmented cells, and stimulated testosterone release. Taken together, the present study is the first evidence that inhibition of VCL suppresses porcine granulosa cell functions. Moreover, the results suggest that VCL can be a potent physiological stimulator of ovarian functions.


Assuntos
Progesterona , Proteína Supressora de Tumor p53 , Feminino , Suínos , Animais , Ciclina B1/metabolismo , Ciclina B1/farmacologia , Caspase 3/genética , Caspase 3/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Vinculina/genética , Vinculina/metabolismo , Progesterona/farmacologia , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proliferação de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Células Cultivadas , Fator de Crescimento Insulin-Like I/metabolismo
13.
EMBO Mol Med ; 16(3): 475-505, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360999

RESUMO

We find that NUPR1, a stress-associated intrinsically disordered protein, induced droplet formation via liquid-liquid phase separation (LLPS). NUPR1-driven LLPS was crucial for the creation of NUPR1-dependent stress granules (SGs) in pancreatic cancer cells since genetic or pharmacological inhibition by ZZW-115 of NUPR1 activity impeded SGs formation. The KrasG12D mutation induced oncogenic stress, NUPR1 overexpression, and promoted SGs development. Notably, enforced NUPR1 expression induced SGs formation independently of mutated KrasG12D. Mechanistically, KrasG12D expression strengthened sensitivity to NUPR1 inactivation, inducing cell death, activating caspase 3 and releasing LDH. Remarkably, ZZW-115-mediated SG-formation inhibition hampered the development of pancreatic intraepithelial neoplasia (PanINs) in Pdx1-cre;LSL-KrasG12D (KC) mice. ZZW-115-treatment of KC mice triggered caspase 3 activation, DNA fragmentation, and formation of the apoptotic bodies, leading to cell death, specifically in KrasG12D-expressing cells. We further demonstrated that, in developed PanINs, short-term ZZW-115 treatment prevented NUPR1-associated SGs presence. Lastly, a four-week ZZW-115 treatment significantly reduced the number and size of PanINs in KC mice. This study proposes that targeting NUPR1-dependent SGs formation could be a therapeutic approach to induce cell death in KrasG12D-dependent tumors.


Assuntos
Carcinoma in Situ , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Piperazinas , Tiazinas , Animais , Camundongos , Carcinoma in Situ/genética , Carcinoma in Situ/metabolismo , Carcinoma in Situ/patologia , Carcinoma Ductal Pancreático/genética , Caspase 3/genética , Caspase 3/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Grânulos de Estresse , Mutações Sintéticas Letais
14.
Biochem Biophys Res Commun ; 704: 149703, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38402723

RESUMO

PEI is a cationic polymer, serving as a non-viral transfection carrier grounded in nanotechnology that enhances transfection efficiency via the proton sponge effect. RBM5 is an RNA-binding protein that can inhibit tumor development. This study involved the transfection of RBM5 in prostate cancer cells with PEI, Lipo2000, and their combination. Transwell and wound healing assays were used to observe invasion and migration of prostate cancer cells and flow cytometry was used to observe the apoptosis. Detect the expression of invasion and migration-related protein MMP9 through western blotting experiment. An activity detection kit was used to detect the activity of apoptotic protein caspase-3. We found that there was no significant difference in transfection efficiency when PEI and Lipo2000 were used alone but it significantly improved when they are combined. RBM5 reduced invasion, migration, and proliferation of prostate cancer and enhanced apoptosis. MMP9 expression was reduced, and the activity of caspase-3 was increased. PEI transfection could improve the inhibition of RBM5 on tumors more than Lipo2000. The inhibitory effect is more obvious when the two are used together. RBM5 transfected with PEI can amplify its inhibitory effect on prostate cancer, and this effect is more evident when combined with Lipo2000.


Assuntos
Proteínas de Ligação a DNA , Neoplasias da Próstata , Proteínas de Ligação a RNA , Transfecção , Humanos , Masculino , Apoptose , Caspase 3/genética , Caspase 3/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a DNA/farmacologia , Proteínas de Ligação a DNA/uso terapêutico , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias da Próstata/terapia , Proteínas de Ligação a RNA/farmacologia , Proteínas de Ligação a RNA/uso terapêutico , Transfecção/métodos , Proteínas Supressoras de Tumor/metabolismo
15.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38397026

RESUMO

The purpose of this study was to investigate the initiation of autophagy activation and apoptosis in nucleus pulposus cells under temporary compression (TC) and sustained compression (SC) to identify ideal research approaches in intervertebral disc degeneration. Various techniques were used: radiography (X-ray), magnetic resonance imaging (MRI), transmission electron microscope (TEM), H&E staining, Masson's trichrome staining, immunohistochemistry (IHC) (LC3, beclin-1, and cleaved caspase-3), and real-time polymerase chain reaction (RT-qPCR) for autophagy-related (beclin-1, LC3, and P62) and apoptosis-related (caspase-3 and PARP) gene expression analysis. X-ray and MRI revealed varying degrees of disc degeneration, ranging from moderate to severe in both groups. The severity was directly linked to compression duration, with SC resulting in notably severe central NP cell degeneration. Surprisingly, TC also caused similar, though less severe, degeneration. Elevated expression of LC3 and beclin-1 was identified after 6 weeks, but it notably declined after 12 weeks. Central NP cells in both groups exhibited increased expression of cleaved caspase-3 that was positively correlated with the duration of SC. TC showed fewer apoptotic markers compared to SC. LC3, beclin-1, and P62 mRNA expression peaked after 6 weeks and declined after 12 weeks in both groups. Cleaved caspase-3 and PARP expression peaked in SC, positively correlating with longer compression duration, while TC showed lower levels of apoptosis gene expression. Furthermore, TEM results revealed different events of the autophagic degradation process after 2 weeks of compression. TCmay be ideal for studying early triggered autophagy-mediated degeneration, while SC may be ideal for studying late or slower-triggered apoptosis-mediated degeneration.


Assuntos
Degeneração do Disco Intervertebral , Humanos , Degeneração do Disco Intervertebral/metabolismo , Caspase 3/genética , Proteína Beclina-1/genética , Proteína Beclina-1/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Apoptose , Autofagia
16.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338801

RESUMO

In a family with Familial Non-Medullary Thyroid Carcinoma (FNMTC), our investigation using Whole-Exome Sequencing (WES) uncovered a novel germline USP42 mutation [p.(Gly486Arg)]. USP42 is known for regulating p53, cell cycle arrest, and apoptosis, and for being reported as overexpressed in breast and gastric cancer patients. Recently, a USP13 missense mutation was described in FNMTC, suggesting a potential involvement in thyroid cancer. Aiming to explore the USP42 mutation as an underlying cause of FNMTC, our team validated the mutation in blood and tissue samples from the family. Using immunohistochemistry, the expression of USP42, Caspase-3, and p53 was assessed. The USP42 gene was silenced in human thyroid Nthy-Ori 3-1 cells using siRNAs. Subsequently, expression, viability, and morphological assays were conducted. p53, Cyclin D1, p21, and p27 proteins were evaluated by Western blot. USP42 protein was confirmed in all family members and was found to be overexpressed in tumor samples, along with an increased expression of p53 and cleaved Caspase-3. siRNA-mediated USP42 downregulation in Nthy-Ori 3-1 cells resulted in reduced cell viability, morphological changes, and modifications in cell cycle-related proteins. Our results suggest a pivotal role of USP42 mutation in thyroid cell biology, and this finding indicates that USP42 may serve as a new putative target in FNMTC.


Assuntos
Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Proteases Específicas de Ubiquitina , Humanos , Caspase 3/genética , Predisposição Genética para Doença , Mutação , Tioléster Hidrolases/genética , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Proteína Supressora de Tumor p53/genética , Proteases Específicas de Ubiquitina/genética
17.
Reprod Toxicol ; 124: 108535, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216069

RESUMO

A negative impact of finasteride on fertility has been reported, in which over production of reactive oxygen species and apoptosis were implicated. Hesperidin, a plant-derived bioflavonoid with antioxidant and anti-apoptotic effects, may mitigate these adverse effects. In order to investigate the possible protective role of hesperidin against finasteride-induced seminiferous tubules toxicity in adult male Wistar rats, 60 rats were randomized into five groups (I-V) receiving distilled water, 0.5% sodium carboxymethylcellulose solution, hesperidin, finasteride, and combined hesperidin and finasteride respectively. Testicular weight, sperm count and motility were determined. Testicular tissue homogenates were prepared to measure the level of malondialdehyde (MDA), total antioxidant capacity (TAC), reduced glutathione (GSH) and the gene expression of caspase-3 and B-cell lymphoma 2 (Bcl2). Testes were processed for light and electron microscopic evaluation. Johnsen score was calculated. Administration of finasteride resulted in significantly decreased testicular weights, sperm count and motility, Johnsen score, tissue levels of TAC and GSH together with significant increase in tissue MDA. Gene expression revealed significantly increased caspase-3 and decreased Bcl2. Furthermore, finasteride disrupted the seminiferous tubules, causing degenerative changes affecting Sertoli cells and spermatogenic cells. Co-administration of hesperidin with finasteride resulted in improvement in testicular weights, TAC, GSH, Bcl2, Johnsen score, sperm count and motility as well as preservation of the structure of the seminiferous tubules. To conclude, hesperidin was found to have a protective potential on finasteride-induced oxidative stress, apoptosis and testicular structural damage.


Assuntos
Hesperidina , Testículo , Masculino , Ratos , Animais , Ratos Wistar , Hesperidina/metabolismo , Hesperidina/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Finasterida/toxicidade , Finasterida/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Sêmen/metabolismo , Túbulos Seminíferos , Espermatozoides , Estresse Oxidativo , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
18.
PeerJ ; 12: e16806, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38282862

RESUMO

Background: Circular RNAs (circRNAs) and their derived peptides represent largely unchartered areas in cellular biology, with many potential roles yet to be discovered. This study aimed to elucidate the role and molecular interactions of circSHPRH and its peptide derivative SHPRH-146aa in the pathogenesis of neuroblastoma (NB). Methods: NB samples in the GSE102285 dataset were analyzed to measure circSHPRH expression, followed by in vitro experiments for validation. The role of SHPRH-146aa in NB cell proliferation, migration, and invasion was then examined, and luciferase activity assay was performed after SHPRH-146aa and RUNX1 transfection. Finally, the regulation of NB cell apoptosis by SHPRH-146aa combined with NFKBIA was tested. Results: The GSE102285 dataset indicated overexpression of circSHPRH in NB samples, further supported by in vitro findings. Overexpression of circ-SHPRH and SHPRH-146aa inhibited proliferation, migration, and invasion of NB cells. A significant increase in apoptosis was observed, with upregulation of Caspase-3 and downregulation of Bcl-2. Furthermore, the peptide derivative SHPRH-146aa, derived from circSHPRH, suppressed NB cell malignancy traits, suggesting its role as a therapeutic target. A direct interaction between SHPRH-146aa and the transcription factor RUNX1 was identified, subsequently leading to increased NFKBIA expression. Notably, NFKBIA knockdown inhibited the pro-apoptotic effect of SHPRH-146aa on NB cells. Conclusion: The study demonstrates that circ-SHPRH and SHPRH-146aa play significant roles in inhibiting the malignant progression of NB. They induce apoptosis primarily by modulating key apoptotic proteins Caspase-3 and Bcl-2, a process that appears to be regulated by NFKBIA. The SHPRH-146aa-RUNX1 interaction further elucidates a novel pathway in the regulation of apoptosis in NB. These findings indicate that circ-SHPRH and its derived peptide SHPRH-146aa could be potential therapeutic targets for NB treatment.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , DNA Helicases , Neuroblastoma , Ubiquitina-Proteína Ligases , Humanos , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Caspase 3/genética , Linhagem Celular Tumoral , Subunidade alfa 2 de Fator de Ligação ao Core/genética , DNA Helicases/genética , Neuroblastoma/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ubiquitina-Proteína Ligases/genética , RNA Circular/genética
19.
Anal Methods ; 16(5): 667-675, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230518

RESUMO

MiRNA-targeted therapy has become a hot topic in current cancer research. The key to this treatment strategy is to clarify the specific role of miRNA in cancer. However, the roles of some miRNAs acting as oncogenic or tumor suppressors are still controversial, which are influenced by different tumor types, even in the same cancer type. Hence, we designed a novel fluorescent nanoprobe based on polydopamine nanoparticles (PDA NPs) for simultaneously detecting caspase-3 and miRNA-34a within living cells. The specific role of miRNA-34a in different cancer cells could be further identified by studying the expression alterations of caspase-3 and miRNA-34a. Confocal imaging indicated that miRNA-34a indeed acted as a tumor suppressor in anticancer drug-treated MCF-7 and HeLa cells, where the effect of miRNA-34a remains controversial. The designed nanoprobe can offer a promising approach to ascertain the oncogenic or tumor-suppressing role of miRNA in different cancer cells with a simple visualization method, which has valuable implications for exploring the practicability of precision therapy focused on miRNA and evaluating the efficacy of new miRNA-targeted anticancer medications.


Assuntos
Antineoplásicos , MicroRNAs , Neoplasias , Humanos , Células HeLa , Caspase 3/genética , MicroRNAs/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Oncogenes , Neoplasias/genética
20.
Microb Pathog ; 186: 106470, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043625

RESUMO

Endometritis is a significant contributor to reduced productivity in yaks in Tibet, China. The Cyt-c/Caspase-3 signaling axis plays a crucial role in the mitochondrial pathway that triggers cell apoptosis due to endogenous factors. In this study, we examined the endometrial epithelial tissue of yaks with endometritis using pathological examination, immunohistochemical analysis, TUNEL staining, qRT-PCR, and Western blot. The results indicated significant changes in the apoptotic factors of the Cyt-c/Caspase-3 signaling axis. The expression levels of Bak1, Bax, Cyt-c, Apaf-1, Caspase-9, and Caspase-3 were significantly increased (P < 0.05), while the expression level of Bcl-2 was significantly decreased. Immunohistochemistry results revealed significant increase in Bak1, Bax, Cyt-c, Apaf-1, Caspase-9, and Caspase-3 expression in the cytoplasm compared to the healthy group, except for Bcl-2, which showed a significant decrease. Pathological section analysis demonstrated that clinical endometritis in yaks led to structural damage, bleeding, congestion, and inflammatory cell infiltration in the endometrial epithelium. Our study findings indicated that clinical endometritis in yaks can modulate apoptosis of endometrial epithelial cells via the Cyt-c/Caspase-3 signaling pathway, resulting in different levels of damage. This research is pioneering in exploring cell apoptosis induced by clinical endometritis in yaks, offering novel insights and potential strategies for the future prevention and treatment of endometritis in yaks.


Assuntos
Endometrite , Animais , Feminino , Bovinos , Humanos , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/metabolismo , Endometrite/veterinária , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Células Epiteliais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...